Nutrient Neutrality Budget a tool for assessing the nutrient loading to a Habitats Designated Site **Solent Marine Sites** Image Source: Neil Howard Solent Buoys - Flood Tide Copyright: © GrahamAndDairne 2013 ## **Background** There have been a series of court cases in recent years relating to how new plans or projects interact with the Habitats Regulations process where there are existing high levels of background nutrients. These decisions have led Natural England to review its advice on water quality effects on Habitats sites. The additional nutrient load from the increase in wastewater and/or the change in the land use of the development land created by a new residential development can create an impact pathway for potential negative effects on Habitats sites that are already suffering from problems related to nutrient loading. This impact pathway is shown diagrammatically in Figure 1. Habitats Regulations Assessments (HRAs) of new residential developments need to consider whether nutrient loading will result in 'Likely Significant Effects' (LSE) on a Habitats site. If an HRA finds LSE due to nutrient loading, the Appropriate Assessment will need to consider whether this nutrient load needs to be mitigated in order to remove adverse effects on the Habitats site The first step in an HRA involving nutrient neutrality is understanding both whether a residential development will need mitigation to achieve nutrient neutrality and, if so, the amount of nutrients that require mitigating on an annual basis. In order to understand the amount of nutrients a new residential development will create, a nutrient budget for the development is required. This tool provides a step-by-step approach to calculating the nutrient budget for a new residential development. Before a nutrient budget can be completed using the methodology, certain site-specific details for the Habitats Site in question need to be determined. The required details for each stage of the nutrient budget methodology are shown in the instructions tab, with an associated guidance document that informs users of this calculator how to generate certain inputs to the calculator. ### Solent Marine European Sites The Solent Marine Habitats sites comprise a range of Special Areas of Conservation, Special Protection Areas and Remarks are with water pollution and autophication considered at threat to its condition. The Solent is a complex site encompassing a major estuarine system on the south coast of England. The Solent and its inlets are unique in Britatin and Europe for their hydrographic regime with double titles, as well as for the complexity of the marine and estuarine habitats present within the area. The river's vegetation is exceptionally species rich, with many of the typical chalk stream plants present in abundance, including species such as river water-crowfoot and stream water-crowfoot. The rich intertation unique flags statistically, shingle beaches and adjacent costal habitats, including grazing marsh, reededs and damp woodland, support nationally and internationally important numbers of migratory and overwintering waders and waterflow such as niged plower and sandwich tems, as well as important breeding gul and tem populations. Increased levels of nitrogen and phosphorous entering aquatic environments via surface water and groundwater can severely threaten these sensitive habitats and species within the sites. The deviated levels of nutrients can cause eutrophication, leafing to signify blooms which disrupt normal ecosystem function and cause major changes in the aquata community. These signify all blooms can result in reduced levels of oxygen within the water, which in turn can lead to the death of many quastic organisms including invertebrates and fish. to the deem of melay adjusted in the present learning the street tested in the designations are referred to a 'qualifying features.' Not the section and habitats within the Similar Section of the sequilibrium of the section of the sequilibrium section of the sequilibrium section of the sequilibrium section of the sequilibrium section of the More detailed information on the qualifying features of the SPA and details of water quality data highlighting the current nutrient problems in the site are available in the Natural England Solent and Southampton Water SPA evidence summary ### Instructions The nutrient budget for a site is calculated in four stages, with each stage implemented in the following worksheets. #### 1. General tips: When a cell is selected instructions are shown on how to fill out the cell: It is advisable to retain a blank copy of this workbook and "Save as" a new copy each time you calculate a budget, in case of any mistakes in data inputs or to ease calculation of new nutrient budgets . #### Note: The values already included in this tool have been chosen based on research to determine suitable inputs to the nutrient budget that meet the HRA tests of beyond reasonable scientific doubt, in perpetuity (practically speaking this is 80-125 years) and in accordance with the precautionary principle. If editing any values in this tool, you must make sure there is a sufficient evidence base to justify these changes and that the new inputs are selected in accordance with the precautionary principle. ### 2. Stage specific instructions: ### 2.1 Stage 1: calculate the new nutrient load associated with the additional wastewater: In this section the user will need to enter: The date of first occupancy. This is because some wastewater treatment works (WwTW) may be due an upgrade in 2025 which will change the nutrient concentration permit values. This will be shown through two values for the permits and nutrients load from before and after the upgrade. The average occupancy rate of the development will need to be entered. The default setting is the national occupancy rate of 2.4 people per dwelling/unit. Only change this value if there is sufficient evidence that the development will be different to the national average. The number of dwellings/units that will be in the development at the time of completion. Whether the catchment of the proposed development has a deductible acceptable loading or not. The receiving WwTW that the development will drain to. If it is uncertain what WwTW the site will drain to, please find this information from your sewerage company before completing the calculator. If it is not feasable to connect to a WwTW and a septic tank or package treatment plant is being used, please select this option. Please be aware that if the total nitrogen (TN) final effluent concentrations (in mg/l) are specified by the manufacturer, please select 'Septic Tank user defined' or 'Package Treatment Plant user defined' and enter the manufacturer specified value in the cell where prompted. ### 2.2 Stage 2 - calculate the annual nutrient load from existing (pre development) land use on the development site: In this section some environmental information about the development will need to be entered as well as the type(s) and area(s) of landcover on the development site. Only landcovers for the land that is being altered by the development should be entered. The drop down list of landcover types contains seven agricultural landcover types and eight different non-agricultural landcover types that may be present in the development. Please find out what landcover types are within the development before completing this tool. If there is a landcover within the development area that is not in the list please select the most similar landcover type. The instructions at the bottom of this page detail how to find the environmental information for the site if it is unknown. ### 2.3 Stage 3 - calculate the annual nutrient load from new (post-development) land use on the development site: In this section the user will need to select the type(s) and area(s) of the landcover present on the new site. The drop down list of landcover types contains eight different landcover types that may be present on the development site. Please find out what landcover types will be within the development site before completing this tool. If there is a landcover within the development site that is not in the list please select the most similar landcover type. The guidance document that accompanies this calculator breaks down what is included in each landcover type # 2.4 Stage 4 - calculate the net change in nutrient loading for the site and the final annual nutrient budget for the development site: This final stage automatically calculates the results from Stage 1-3 using the equation below. The value(s) shown are how much nutrient mitigation is required in kilograms per year to achieve nutrient neutrality. If there are two values due to changing permits, the calculator will show the total amount of nutrient mitigation that is needed before and after the changing permit date. ### 2.5 The equation used to calculate the nutrient budget: ### 3. Site specific data collection instructions: ### ${\bf 3.1}\ Instructions\ for\ finding\ the\ Operational\ Catchment\ that\ the\ development\ is\ situated\ within:$ - a) Go to this link http://environment.data.gov.uk/catchment-planning/ - b) Search the location by place name, postcode etc. This will give a high-level view of the area. Use the zoom feature to find the exact location of the development. - c) Click on the light blue area on the map in which the development is located. This will bring the user to the Operational Catchment page - d) Make note of the name of the Operational Catchment and select it from the dropdown list in the relevant cell. #### 3.2 Instructions for finding the drainage associated with the predominant soil type within development site: - a) Go to this link http://www.landis.org.uk/soilscapes/#. - b) Find the site location on the map by using the search bar on the right side of the map in
the 'Search' tab. Searching an area will generate a pop up window in which you can view the soil information by clicking 'View soil information'. If this is not an option then click on the relevant soil type on the map and click on the 'Soil information' tab on the right hand side of the map, below the 'Search' tab. - c) The 'Soil drainage type' value can be found In the 'Soil information' under the title 'Drainage: - d) Make a note of this soil type and select the relevant soil drainage type from the drop down list in the relevant cell. ### 3.3 Instructions for finding the annual average rainfall that the development will receive using the National River Flow Archive: - a) Go to this link https://nrfa.ceh.ac.uk/data/station/spatial/42019 - b) This link will bring the user to the Tanners Brook at Milbrook flow gauge catchment information page. - c) Click on the dropdown list next to the title 'Select spatial data type to view:' on the left of the map and select 'Rainfall'. Next select the Legend tab. - d) Zoom in on the map to find the location of the development and find the corresponding rainfall range from the Legend. - e) Select the rainfall band from the drop down list in the table. If your rainfall band is not in the drop down list, please select the closest band shown in the list. ### ${\bf 3.4\ Instructions\ for\ finding\ out\ whether\ the\ development\ is\ in\ a\ Nitrate\ Vulnerable\ Zone\ (NVZ):}$ - a) Go to this link http://mapapps2.bgs.ac.uk/ukso/home.html?layers=NVZEng - b) Enter the location of the development site in the search bar. - c) Once the area has been located, click on the map where the development is located to find out if is within an NVZ. - d) Make note of this and select this in the dropdown list. | Development site details | | | | | | | |------------------------------|--------------------------------|--|--|--|--|--| | Date (dd/mm/yyyy): | 08/09/22 | | | | | | | Site Name: | Land East of Newgate Lane East | | | | | | | Planning Application number: | APP/A1720/W/22/3299739 | | | | | | | Site Address: | | | | | | | | User I | nputs | | | |-----------------------------------|-----------------------|---|---| | Catchment: | | East Hampshire Rivers | | | Soil drainage type: | | Impeded drainage | | | Annual average rainfall (mm): | | 700.1 - 750 | | | Within Nitrate Vulnerable Zone (N | VZ): | No | Ī | | Existing land use type(s) | Area
(ha) | Annual nitrogen
nutrient export
(kg TN) | | | Cereals Open urban land Lowland | 13.83
1.46
4.65 | 278.97
11.63
32.54 | | | Total | 19.94 | 323.15 | | # Stage 3 | User Inputs | | | | | | | | | |---|--------|-------------------------------|---|--|--|--|--|--| | New land use type(s) | | Area (ha) | Annual nitrogen
nutrient export
(kg TN) | | | | | | | Residential urban land Greenspace Residential urban land Greenspace | | 10.56
4.73
2.98
1.67 | 142.65
14.19
40.26
5.01 | | | | | | | | Total: | 19.94 | 202.11 | | | | | | # Stage 4 Calculated Outputs Annual Nutrient Budget The total annual nitrogen load to mitigate is: 152.97 kg TN/year | Look Up Ta | ables | | | | | | | | | | | | |--|--|---|--|--
--|--------------------------------------|--|--|--|---|--------------------------------------|---| | Table + Grane + WaTW indices Discharge Site Name | Nitrogen Total as N (regl) with deductible acceptable loading | Nitrogen, Total as N (mgll) | Nitrogen Total as N (mg/l),
permit post 2025 with
deductible acceptable loading | Nitrogen, Total as N (mg/l), permit post | | | | | | | | | | | 95 | 97
97
97
22
97 | %
%
25 | 97
97
27
27 | _ | | | | | | | | | Security of the Control Contr | NE E E E DE NA CONTRA DE REGERERA REGERERA REGERERA REGERERA REGERERA DE REGERERA DE REGERERA DE REGERERA DE R | 97
97
27
45 | % % % % % % % % % % % % % % % % % % % | 07
07
27
46 | | | | | | | | | | Blocke WWTW Blockerhunt WwTW Blockerhunt WWTW Bludos Farm WwTW | 25
25
8
25
7.7 | 97
10
97
97 | %
8
%
77 | 07
10
07
67 | | | | | | | | | | Carbourie werry Carbeston Lane Brook WwTW Chale WwTW Chichester WwTW Chichester WwTW Chickerhal Existingh WwTW | 25
25
7
25 | 97
97
97
9 | | 07
07
6
07 | | | | | | | | | | Chibobon WwTW Chilleton WwTW Drodood WwTW Durbridge WwTW East Brodow S.T.W. | 25
25
25
25 | 97
27
97
97 | %
25
%
% | 07
27
07
07 | | | | | | | | | | East End S.T.W. East Grinstand WWTW East Mison WWTW Effort Farm Cottages Lymington WwTW Evans Close Over Wwiton WwTW | 25
25
25
25
25 | 27
97
97
97
27 | | 27
07
07
07
27 | | | | | | | | | | Findand Lane Sway WwTW
Fullerton Washwater Treatment Works
Graemar Cottages S. English WwTW
Graton Close Sutton Scotney WwTW
Godehil | 25
25
25
26 | 97
97
97
27 | × × × × × × × × × × × × × × × × × × × | 07
07
07
27
07 | | | | | | | | | | Hannington WwTW Hanestock Wastewater Treatment Works Hazely Combe WwTW Highwood Lane Rookley WwTW | 25
25
25
25 | 97
97
97
27 | %
%
% | 07
07
07
27 | | | | | | | | | | My Doen Lane Wel TW Kings Somborne We'TW Kings Somborne We'TW Lavant We'TW | 25
25
25 | 96
97
27
97 | %
%
25
% | 66.
07
27
03 | | | | | | | | | | Lip Lane West Sole WwTW Lip Lane West Sole WwTW Lip Lane West Sole Twatment Works Millbrook WwTW Mostead WwTW | 25
25
8
25 | 97
27
46
97 | %
25
a
% | 07
27
4h
07 | | | | | | | | | | Morestand We I'W New AreaSod WeTW Newlands Mentions WeTW Newlands S.T.W. North View Thoday WeTW | 20
25
25
25 | 25
07
07
07 | 20
00
00
00
00 | 25
00
07 | | | | | | | | | | North Wattram Well III Overloon Wastewater Treatment Works Passford House Swiny Well III Peel Common Well III Pennington Well III | 198
25
7
7.5 | 20
97
97
6 | %
%
7
76 | 200
07
6
6 6 | | | | | | | | | | Portwood the FW
Redgloch S.T.W.
Romery WwTW
Road WwTW
Saddles Close Sutton Scotney WwTW | 25
25
25
25 | 27
97
97
97
27 | 26
%
% | 27
07
07
07
27 | | | | | | | | | | Sandown WwTW
Shaeffeet WwTW
Slowhill Copee WwTW
Southwick WwTW
St Helens WwTW | 5
5
2
2
5 | 97
97
44
27
97 | %
%
10
25
% | 07
07
14
27
07 | | | | | | | | | | Stockbridge WWTW Thomhan WWTW Thoms Seach WWTW West Marden WWTW West Wellow WwTW | 15
12
25
25
25 | 97
40
27
97 | %
25
% | 07
48
27
07
07 | | | | | | | | | | Willow Wood St.Lawrence WwTW
Whitchurch WwTW
Whitehouse Farm Development WwTW
Whitehoam WwTW
Wildows WwTW | 25
30
2
25
25 | 97
22
4
97 | a 25 % % % % % % % % % % % % % % % % % % | 07
22
2
4
07 | | | | | | | | | | Woolkins WwTW
Whoeld William Deviana Treatment Disert rights & Gentle Tanis Adminit Deviana Treatment Disert user defined | 13
25
70.9
94.3 | 97
97
46
27
29
90-1 | 13
25
70.9
94.3 | 15
27
71-0
66.1 | | | | | | | | | | Sectic Tank user defined Table 2: Stage 2 and 3 Landcover lookup Catchment |
 | NVZ | | Farmscoper Soil Drainage Term |
 | | L | FarmLookup | Mean P export of farm type and climate | Mean N export of farm type | Mean P export of farm type | L | | Cast Mennahira Disare
Cast Mennahira Disare
Cast Heroshire Rivers | Canada
Canada
Canada | CH CC
TOLIC
FALSE | 700walon
200walon
700walon
200walon
200walon | Creathnin Creathnin Dishedir Prelimete (reshade) | East Hampshire Rivers/Canada F.N. SE/P00b0000FreeCrain
hast Hampshire Rivers/Canada F.N. SE/P00b0000FreeCrain
East Hampshire Rivers/Canada F.N. SE/P00b0000FreeCrain | A 44
A 44
D 627 | 97 00
97 00
21 50
94 03
04 43 | Censals/700s360
Censals/700s360
Censals/700s360 | a C | and climate combination | A-00 | Su +9 | | Cast Usernahira Disare
Cast Usernahira Disare
Cast Hamoshira Pisare
Cast Usernahira Disare | Canada
Canada
Canada
Ganarel | EM CC
TOLIC
TRUE
EM CC | 700m-000
200m-000
900m-000
200m-000 | Oreinantin'ir
Oreinantin'ir
FreeDrain
CreeDrain | Cast Hamsdrin Rivers Claranda F.P. EST Pibber 800 Trained Ard
hasher Hampsdrin Rivers Claranda F.P. EST Pibber 800 Trained Ard
hasher Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast
Chain
East Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Chain
Cast Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Chain
East Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Chain
Cast Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Chain
East Hampsdrin Rivers (East Chain 2000 to 100) Fast Chain
East Hampsdrin Rivers (East Chain 2000 to 100) Fast Hampsdrin Rivers (East Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Hampsdrin Rivers (East Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Hampsdrin Rivers (East Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Hampsdrin Rivers (East Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Hampsdrin Rivers (East Hampsdrin Rivers Claranda (FRLE 2000 to 100) Fast Hampsdrin Rivers (East Ha | 020
020 | 00 47
00 40
29 66
40 40 | Censals/7005000
Censals/7005000
Censals/800501200
General/7005000 | 020
040 | 25 30
vc.as | 0.00 | 46.40 | | Cast Mannahira Chare East Harnahira Chare Cast Mannahira Chare Cast Mannahira Chare Cast Mannahira Chare Cast Mannahira Chare | General
General
General
General | CH CC
TRUE
CH CC
TO CC | Tritonialini
Sollosi (200
Sollosi (200
Sollosialini
Tritonialini
Tritonialini
Tritonialini
Tritonialini
Sollosi (200
Tritonialini
Sollosi (200 | Christophi
Distinger
Christophical
Christophical | Last Hampstre Howergament Russer Auserbucker
East Hampstre Flowergament (FRLE) (Stockol) (France)
East Hampstre Flowergament (FRLE) (Stockol) (France)
East Hampstre Flowergament FRLE) (Stockol) (Contract) of
East Hampstre Flowergament (FRLE) (Stockol) (Contract) (FRLE)
East Hampstre Howergament (EAST) (Stockol) (Contract) (FRLE)
East Hampstre Howergament (EAST) (EAST) (FRLE) | 0.44
0.44
0.66
0.66 | 54 52
+3 64
+3 64
+3 64
+3 64
+3 64 | Ceneral/2000000
General/200000
General/200000
General/2000000
General/2000000000000000000000000000000000000 | 050 | 19.70 | | | | Cast Mannahira Dhare | Canaral
Moderations
Moderations
Moderations | TONE CENCE TONE TONE CENCE | 600x+2000
200x-6000
200x-6000
200x-6000 | Createrian
Createrian
Createrian
Createrian | Each Hamachine Rivers Canner State (12/00/2000) Class Hamachine Rivers Canner State (12/00/2000) Class Hamachine Rivers Canner State (12/00/2000) Class Hamachine Rivers (12/0 | 0.40
0.40
0.40 | 68 05
94 93
94 93
94 93 | Generalpococcuso Horicultural/2003000 Horicultural/2003000 Horicultural/2003000 Horicultural/20030000 | A 5A | 42.00 | *# | 18.00 | | Column | Section | | Gallerin Filon Sillerin Galleri Galle | Amende de la company com | Cast Hampshire Rivers/Scrickars (TRUE) proteins(participated AGC
East Hampshire Rivers/Scrickars (TRUE) proteins(participated AGC
East Hampshire Rivers/Scrickars (TRUE) 800tot 1000F reaCrain
East Hampshire Rivers/Scrick 50 C0005000F reaCrain
Last Hampshire Howership (TRUE) reacrain
Last Hampshire Howership (TRUE) reacrain
Cast Hampshire Rivers/Scrickars (Last Hampshire Rivers) | | | Seminar Designation of the control o | 0 48
0 60 | 4C 00 | 44 | A4 60 | | Las Harnahire Disare Cast Harnahire Disare Cast Harnahire Disare Cast Harnahire Disare Cast Harnahire Disare | Din
Din
Druites
Posites | CH CC
TOKE
CH CC
TRUE | 200x400
200x400
200x400
200x400
200x400 | Designation of the Control Co | Later Hamilton Science (Prof. Later Unit Later Unit Later Hamilton Science (Prof. Later Hamilton) (1994) (1 | 8.00
8.00
8.00
9.12 | 1200
1200
1200
1200
1200
1200
1200 | Pia/200x660
Pia/200x660
Pia/sy/200x660
Pia/sy/200x660
Pia/sy/200x660 | a.o | 00 M | A-90 | 645.00 | | Cast Mannahira Olasre Cast Mannahira Olasre Cast Hampshire Rivers Cast Mannahira Olasre | Double
Daily
Daily | TOKE
TOKE
TRUE
TOKE | 200x4000
200x4000
600x4000 | Creativain Creativain DrainedArGr Creativain | Some Hammarine Forens Hammarine Constitution | 116
0.00 | 430 as
43 Gh
19 S4
ac G7 | Poultr/9000/100
Liary/1000/90
Dairy/1000/90
Dairy/1000/90
Dairy/1000/90 | n on
n ac
n on | 100 01
01 00
70 00
000 | n. on | 96 Na | | Cast Mannahira Olasre Cast Mannahira Olasre Cast Hampshire Rivers Cast Mannahira Olasre | E-mailtend
E-mailtend
E-mailtend
E-mailtend | TO IC
CH CC
TRUE
CH CC | 700m400
700m400
700m400
700m400 | Creat resin Creates Drained& Creates Drained&c | ABERT HARDSTEIN DEUTSCHLIEBERGEN AUS DOODSOOD DEUTSCHLIEBERGEN ABERT HARDSTEINE DEUTSCHLIEBERGEN AUS DEUTSCHLIEBER | 0.00
0.10
0.10 | 9364
606
891
700 | Lowand/1000000
Lowand/1000000
Lowand/1000000
Lowand/1000000 | | | | W. 73 | | East Hannahire Risers | Control Losted Minut | TOKE
TRIE
TOKE
TOKE | 900x1200
900x1200
20xx400
20xx400 | Creations Distinger Creations Creations | Cant Hampathin River (Lawind (TRLE) (1900a) (1000a) maneke
Cant Hampathin River (Lawind Riv ELE) (1900a) (1000a) maneke
Cant Hampathin River (Lawind Riv ELE) (1900a) (1000a) (1000a)
Cant Hampathin River (Lawind (TRLE) (1900a) (1000a) (1000a)
Cant Hampathin River (Lawind (TRLE) (1900a) (1000a)
Cant Hampathin River (Lawind (TRLE) (1000a) (1000a)
Cant Hampathin River (Lawind (TRLE) (1000a) (1000a)
Cant Hampathin River Ri | 840
022
844
864 | 12.58
14.77
10.64 | Lowinspectorsiste
Lowinspectorsiste
Mand700to600
Mand700to600 | n 01
n 45 | 61 47
45-00 | 0.40 | OH GE | | East Mannahine Disare East Mannahine Rivers Into At Works Disare Into At Works Disare Into At Works Disare | Mind
Canale
Canale
Canale | TRUE
CHICC
TRUE
CHICC
CHICC | 900x-000
900x-000
700x-000
200x-000
200x-000 | Presidential
FreeDrain
Creativein
Creativein
Orainaria | East Hampstine Rivers(March (File(RO)) 200 FeeDrain
fair of Wicht Rivers(March (File(RO)) 200 FeeDrain
fair of Wicht Rivers(Careals (File(RO)) 200 FeeDrain
fair of Wight Hovers(Careals (File(RO)) 200 FeeDrain
fair of Wight Hovers(Careals (File(RO)) 200 FeeDrain
fair of Wight Hovers(Careals) 452-by/1000000000000000000000000000000000000 | 0.07
0.18
0.44
0.44 | 10 14
20 29
0 23
0 53
0 40 70 | Managlotta 1200
Censala/100tal00
Censala/100tal00
Censala/100tal00
Censala/100tal00 | 018
n 60 | 21 54
or 06 | A CA | 00 46 | | bile of Wilott Rusers
bin of Wilott Dinary
bin of Wilott Dinary
bin of Wilott Dinary
bin of Wilott Rusers | Canada
Canada
Canada
Canada
Canada | TRIE
EM CC
TONE
TONE
TRIE | Sandario de la companya del la companya de la companya de la companya del | Drainadkrür Drainadkrür Crainadkrür Crainadkrür Drainadkrür | | 0 68
n 65
n 66
n 66
n 68 | 19.74
4a.6c
4a.64
97.00
21.11 | Censis/10050800
Censis/10050800
Censis/10050900
Censis/800507200 | n en | 0a 47 | | | | bris of Winds Dissery
bris of Winds Dissery
bris of Winds Dissery
bris of Winds Dissery
bris of Winds Rivery | Canarai
Canarai
Canarai
Canarai
Ganerai | EM GE
TONE
EM GE
TONE
FALSE | 700+400
700+400
700+400
700+400
700400 | Creat/min Creat/min Oreinarite Oreinarite Distination | tele of Wicht Rower Canarati F. A. Sci (19ta 1605 Fea Crain tele of Wicht Power Canarati Tele (19ta 1606 Fea Crain tele of Wicht Power Canarati Filia (19ta 1606 Fea Crain tele of Wight Hower Canarati H. A. Sci (19ta 1606 Fea Crain 1607 | 0.44
0.46
0.46
0.71 | 94 00
94 00
95 40
95 40
93 71 | General/Octobio
General/Octobio
General/Octobio
General/Octobio
General/Octobio | 0.45 | 46.75 | A.04 | 48.85 | | Inio of Winds Disease
bins of Winds Disease
bins of Winds Disease
bins of Winds Risease
bins of Winds Risease | Canarai
Canarai
Canarai
Canarai
Canarai | TO IC
TO IC
TO IC
FASS
TO IC | 200e-000
G00e-2000
G00e-2000
Over1500
Chart500 | Contraction for
Constitution Contraction
Contraction
for
Contraction for
Contraction for | tele of Wicht Rower Ganerall Fild (2000) 0000 crained Arill tele of Wicht Rower Ganerall Fild (2000) 0000 meditain tele of wight Rower Ganerall (2000) 0000 meditain tele of Wight Rower Ganerall Fild (2000) 0000 crained Arill tele of Wight Rower G | 674
606
167
167 | 95 da
90 da
95 da
95 da
95 da | General/00ts/00
General/00ts/100
General/0ver1500
General/0ver1500 | n 30
2 56 | 10.00
25.04 | | | | bris of Winds Disses
bris of Winds Disses
bris of Winds Disses
bris of Winds Disses
bris of Winds Disses | Moderations
Moderations
Hodications
Moderations
Moderations | EM GC
TOLE
FASSE
TOLE
EM GC | 200+400
200+400
200+400
200+400
200+400 | Creat/min Creat/min DrainedAr Createariter Createariter | hile of Wicht Riversiteriouture/FALSE/00ts/6007-selfcrain see or Wight Noversiteriouture/FALSE/00ts/6007-selfcrain sie of Wight Riversiteriouture/FALSE/00ts/6007-sines4V site Riversiteriout | 8 40
8 40
8 56
8 66
8 60 | 04 00
04 00
95 47
45 49
40 64 | Hariculture/700tal000
Hariculture/700tal000
Hariculture/700tal000
Hariculture/700tal000 | n Ga | | 0.40 | 48.34 | | Inlin of Michel Disarre
Inlin of Wolth Disarre
Inlin of Wolthe Disarre
Inlin of Wolthe Disarre
Inlin of Wolthe Disarre | Motifications PEG Disc Doubles Doubles | TOLE
TRUE
TOLE
EN CC
TOLE | 900x4000
750x4000
700x4000
700x4000 | Creatives FreeCrain Oreinade/Gr Creatives Creatives Creatives | see of Wight Revent/Port Duties of this judgest zoop-rescrize size of Wight Revent/Port Duties Dotter See See See See See See See See See S | 0.00
0.15
0.00
0.44 | 99.77
63.62
96.74
64.65 | Pig/700x660
Pig/700x660
Pia/700x660
Poults/700x660
Poults/700x660 | 054
054 | 00 27
40 70
40 44 | 0 SA
0 AF | 49 79
40 40 | | Isle of Wicht Rivers bin of Winte Disers bin of Winte Disers bin of Winte Disers bin of Winte Disers | Positry
Doubles
Doubles
Chains
Chains | TRUE
EM CC
TOLIC
EM CC
TOLIC | 700x800
20x400
20x400
20x400
20x400 | Drainadir Drainadir/or Drainadir/or Crainadir/or Crainadir/or Crainfrain | ties of Wight Novemproutry inclusives acceptance with an of Wight Power Poutry VIII. SECTION 0000000 chaire 494 Graits of Wight Rivers Poutry TRUET/000x0000 Chaire 494 Graits of Wight Novemproutry Acceptance acceptance or Wight Novemproutry Acceptance acceptance or Wight Novemproutry Acceptance acceptance or Wight Novemproutry Acceptance acceptance. | 047
nan
n 79
n 44 | 3825
90.44
90.60
90.60
90.65 | Pouts/100ol60 Pouts/100ol60 Pouts/100ol60 Lawyyososso Lawyyososso | 0.40 | 99 MA | 4.00 | 99 77 | | Isle of Wicht Rivers
Inle of Wicht Disease
Inle of Wicht Disease
Inle of Wicht Rivers | Dairy
Dairy
Dairy
Lowland | FALSE
EN CC
TOLIC
TOLIC
FALSE | 700x800
700x800
700x800
70x800
7xxx1500
700x800 | Drainedir Orninariaris Orninariaris Orninariaris FreeDain | his of Wight Rown(Dain);FA SE(VOINDO) Drained 4;
its of Wight Rown(Dain);FA SE(VOINDO) Drained 4;Gr
life of Wight Rown(Dain);FA SE(VOINDO) Drained 4;Gr
life of Wight Rown(Dain);FA SE(VOINDO);Drained 4;Gr
life of Wight Rown(Dained FA SE(FA SE(VOINDO));FineDrained
life of Wight Rown(Dained FA SE(FA SE(VOINDO));FineDrained
Research (Section FA SE(VOINDO));FineDrained SE(VO | 0.00
n.oc
n.oo
n.oo
0.10 | 22.76
ec os
ec es
ec es
so es
so es | Dairy/00xx600
Dairy/00xx600
Dairy/0xx600
Dairy/0xx600
Dairy/0xx600
Lowland/00xx600 | 9 Ga
0 31 | 10 an
11 29 | 0.30 | 12 15 | | bris of Winds Disars
bris of Winds Disars
bris of Winds Disars
bris of Winds Rivers
bris of Winds Disars | I realized I realized I realized Loadwel Loadwel I realized | TOKE EM CC TOKE FA.SE TOKE | 700x4000
700x4000
700x4000
700x4000
700x4000 | Creativale Creinarie Crein | his of Wicht RiversLoviandTRLED90x1000FreeDrain
his of Wicht RiversLoviandFAL50F90x000DrainadW
liss of Wight RiversLoviandFAL50F90x000DrainadW
liss of Wight RiversLoviandFAL50F90x000DrainadWGr
list of Wight RiversLoviandFAL50F90x000DrainadWGr
list of Width RiversLoviandFAL50F90x000DrainadWGr | 0.40
0.40
0.40
0.60 | 44 07
44 92
8 10
8 10 | Lowland/100sol00
Lowland/100sol00
Lowland/100sol00
Lowland/100sol00
Lowland/100sol00 | | | | | | Intio of Wilche Disarre
Intio of Wilche Disarre
Intio of Wilche Rivers
Intio of Wilche Disarre | I named
I named
Losiand
I named
Misst | TOKE TOKE FASE TOKE EN GE | Sinevitori
Sinevitori
Osertisti
Timesteri | Creatives Orelanderis FreeCreat Creatives Creatives Creatives | teis of Wight RiversitzerlandTRUERIOODENECTRAIN see of Wight Newsytzerland (no.d.,potocrozzozzanezhrur see of Wight RiversitzerlandTRUERIONETSSS)PeelDrain see of Wight RiversitzerlandTRUERIONETSSSSPeelDrain see of Wight RiversitzerlandTRUERIONETSSSSPeelDrain see of Wight RiversitzerlandTRUERIONETSSSSPeelDrain | 0.47
4.06
0.08
0.49 | 45 04
45 55
54 12
44 54
90 Ah | Lowiand(600scr200
Lowiand(60scr200
Lowiand(60scr200
Lowiand(60scr200
Maxed700sc600 | 028
028 | 10 12
10 12 | | -7 to | | Inlin of Michel Disarre
Inlin of Wolth Disarre
Inlin of Wolthe Disarre
Inlin of Wolthe Disarre
Inlin of Wolthe Disarre | Minut
Mad
Mout
Mout
Mout | TOHE FALSE TOHE EN CC TOHE | Gillow Film Court 1500 (Fuer 1500) Chart 1500 (Fuer 1500) Thin Gillow Film Film Film Film Film Film Film Film | Creativale Distinction Creinantier Creinantier Creinantier Creinantier'e | iss of Wight Newsyllasing Holls-youtside health in
see of Wight Newsyllasing Assign Control Control
ties of Wight Rewardsed TRUE/DOM:000Drained Ar
lies of Wight Rewardsed Art SCHOOLINGOD trained Art
lies of Wight Rewardsed TRUE/DOM:000Drained Art
lies of Wight Rewardsed TRUE/DOM:000Drained Art
and the Rewardsed TRUE/DOM:000Drained Art
lies of Wight Rewardsed TRUE/DOM:000Drained Art
and the Rewardsed TRUE/DOM:000Drained Art
lies of Wight Rewardsed Rewardse | 0.49
0.49
0.40
0.44 | 99 97
17 24
17 19
14 17 | Managirotasiasi
Managirotasiasi
Managirotasiasi
Managirotasiasi
Managirotasiasi | | | | | | I near Test and Southamoton Streams Lower Test and Southamoton Streams I near Test and Southamoton Streams | Canada
Canada
Canada
Canada
Canada | TOLIC
TRUE
TOLIC
TOLIC
TOLIC | 200x4000
200x4000
200x4000
200x4000 | Creathmin
Drainadhr
Drainadhrúir
Drainadhrúir
Creathmin | Lower 1 est and Southampton Streams Cenesis; Histopromision - rescrict
Lower Test and Southampton Streams (Chemical PRICE DOISSIGNOD) released
Lower Test and Southampton Streams (Cenesis (TRICE DOISSIGNOD)
Lower Test and Southampton Streams (Cenesis (TRICE DOISSIGNOD)
Cower 1 est and Southampton Streams (Lenes (TRICE DOISSIGNOD) - rescrict
Cower 1 est and Southampton Streams (Lenes (TRICE DOISSIGNOD) - rescrict
Cower 1 est and Southampton Lenesis (Lenes (TRICE DOISSIGNOD) - rescrict
Cower 1 est and Southampton Lenesis (Lenes (TRICE DOISSIGNOD) - rescrict
Cower 1 est and Southampton Lenes (Lenes (TRICE DOISSIGNOD) - rescrict
Cower 1 est and Southampton Lenes (Lenes (TRICE DOISSIGNOD) - rescrict
Cower DOISS | 8 49
862
887
4 48
8 49 | 27 64
20 93
44 65
56 64
47 65 | Censis (700s000
Censis (700s000
Censis (700s000
Censis (800s01200
Censis (800s01200 | 6 Ca
4 + 6
6 0 0 | 00 CD | 0.00 | 91 63 | | Lower Test and Southamoton Streams I near Test and Southamoton Greams | General
General
General
General
Motivities | TRUE
TOKE
TOKE
TOKE
TOKE | 900001000 | Contraction | Lower Test and Southampton Streams (Seneral) FILE (F000s800) Insined
Lower Test and Southamoton Streams (Seneral) FILE F000s8000 Ensined
Lower Test and Southamoton Streams (Seneral) FILE F000s1000 Ensined
Lower Test and Southamoton Streams (Seneral) FILE F000s1000 Ensined
Lower Test and Southamoton Streams (Seneral) FILE F000s0000
Fined
Lower Test and Southamoton Streams (Seneral) FILE F000s0000 Fined
Cover Test and Southamoton Streams (Seneral) FILE F000s0000 Fined
Cover Test (Seneral) F000s0000 Fined
F000s0000 F000s000 F000s00 F000s000 | 040
nau
n 76
1 08
6 14 | 13 43
+0 05
47 +6
+460
90 90 | | 047 | 45.00
16.00 | 0.79 | 1640 | | I near Test and Grushamotro Greams I near Test and Grushamotro Greams I near Test and Grushamotro Greams Loser Test and Southamotro Streams I near Test and Southamotro Streams I near Test and Southamotro Streams | Motivation
Motivation
Motivation
Hotication
Do | TOKE TOKE TOKE TOKE TOKE TOKE | 700x4000
700x4000
600x47000
900x1200
700x4000 | Persinantian
Persinantian
Persinantian
Desinantian
Desinantian
Persinantian | Lower Test and Southamoton Streams-Horticultur/TRLE/D006s000Drain
Lower Test and Southamoton Streams-Horticultur/TRLE/D006s000Drain
Lower Test and Southampton Streams-Horticultur/TRLE/D006s00Drain
Lower Test and Southampton Streams-Horticultur/TRLE/D006s00Drain
Lower Test and Southampton Streams-Porticultur/TRLE/D006s00FresDoin
Lower Test and Southamoton Streams-Porticultur/TRLE/D006s00FresDoin
Lower Test and Southamoton Streams-Porticultur/TRLE/D006s00FresDoin
Lower Test and Southamoton Streams-Porticultur-Lower
Lower Test and Southamoton Streams-Porticultur-Lower
Lower Test and Southamoton Streams-Porticultur-Lower
Lower Test and Southamoton Streams-Porticultur-Lower
Lower Lower
Lower Test and Southamoton
Lower Lower
Lower Test and Southamoton Streams-Porticultur-Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Low | 8-50
8-77
8-68
8-14 | 44.00
93.40
93.70
15.11
95.03 | Horiculture/700to900
Horiculture/700to900
Horiculture/900to1200
Horiculture/900to1200
Pio/700to900 | ****
058 | 42.0C
40C 00 | 0.00 | gr 01 | | I near Test and Grushamotro Greams | Din
Din
Druites
Druites
Druites | TOKE
TOKE
TOKE
TOKE
TOKE | 2004-000
0004-000
2004-000
2004-000
0004-000 | Contraction for
Contraction for
Contraction for
Contraction for
Contraction for | Lower Test and Southarnoton Steamer ProTREED/00:000/Draine-Wide
Lower 1 est and Southarnoton Steamer Project (Special Southarnoton
Lower 1 est and Southarnoton Steamer Product (TREED/00:0000) intended
Lower Test and Southarnoton Steamer Product (TREED/00:0000) intended
Lower Test and Southarnoton Steamer Product (TREED/00:0000) intended
Lower Test and Southarnoton Steamer Product (TREED/00:0000) intended
(Lower (Lower Test and Southarnoton Steamer (Treed/00:0000) intended
(Lower Test and Southarnoton Steamer (Treed/00:00000) intended
(Lower Test and S | 100
107
010
001 | AS EA
C4 62
604 65
60 95
444 54 | Pis/700x0600
Pigs00001200
Poultry/700x0600
Poultry/700x0600
Poultry/6000x1200 | 4.0
A.0 | 64.62
196.60
196.62 | 40 | 450.65 | | I numer Test and Grustnamninn Obsames I numer Test and Grustnamninn Obsames Lower Test and Southamnion Obsames I numer Test and Grustnamnion Obsames I numer Test and Grustnamnion Obsames | Drubru
Dahr
Dahr
Dahry
I nadanni | TOKE TOKE TOKE EN GE | 900x4000
200x4000
200x4000
200x4000
200x4000 | PersinantianGr
CreatTrain
DrainadArGr
CreatTrain
Persinantian | Lower Test and Southarmoton Streams Pouthr/TRUE/SI00to 2000/Crolland
Couver Test and Southarmoton Streams (English, Inc.) protocology-resistrant
Lower Test and Southarmoton Streams (Dainy/TRUE/SI00to300)Draine/AVC
Lower Test and Southarmoton Streams (Lower/STE) (CVCDs/S00)Presistrant
Lower Test and Southarmoton Streams (Lower/STE) (CVCDs/S00)Presistrant
Lower Test and Southarmoton Streams (Lower/STE) (CVCDs/S00)Chaine
Cover Test and Southarmoton Streams (Lower/STE) (CVCDs/S00)Chaine
(Streams (CVCDs/S00 | 4 60
ñ 46
1 01
ñ 60
ñ 40 | 60 ft4
95 54
96 37
95 55
95 65 | Poultry/900001200
Ltairy/9000000
Dairy/9000000
Lowtend/9000000
Lowtend/9000000 | n 64
n 9n | 00 MA
40 MA | a.u. | 00 MG
40 Mg | | I numer Tast and Grustvamnénn Otsusens
Lower Test and Southamoton Streams
I numer Tast and Grustvamnénn Otsusens
I numer Tast and Grustvamnénn Otsusens
I numer Tast and Grustvamnénn Otsusens | I contract Londard I contract I contract I contract I contract | TOLE
FASE
TOLE
TOLE
TOLE | 200x4000
200x3000
200x4000
600x4200 | Continuolisis Distilinadis/Gr Continuolisis/Gr Continuolisis/Gr Continuolisis/Gr Continuolisis/Gr | Lower 1 set and soutrampon alreaming.commoi; Hub yocconstitutional
Cower Test and Southampton Seramen[Lowland]FALS(DY00x600D;mined
Lower Test and Southamoton Seramen[LowlandTRILE'000x600D;mined
Lower Test and Southamoton Seramen[LowlandTRILE'000x600D;mined
Lower Test and Southampton orbanning.commoi (Hub protor) response
Lower 1 set and southampton orbanning.commoi (Hub protor) response
protory (Hub protor) | 8 40
862
840
844
4 04 | 60.64
7.30
7.90
93.40 | Lowissoptosalos
Lowissoptosalos
Lowissoptosalos
Lowissoptosalos
Lowissoptosalos | nea | ** % | | | | Lower Test and Southamoton Streams I near Test and Greshamoton Greams I near Test and Greshamoton Greams I near Test and Greshamoton Greams New Forest - Statisy Water | Med
Man
Man
Man
General | TRUE
TOKE
TOKE
FASE | 700x800
70xx40n
60xx40n
60xx40n
700x800 | FreeDrain Orainante/or Orainante/or Orainante/or Drainante/or Drainante/or | Lower Test and Southampton Servanni Massel (RLE) (Noticitis) FreeChrain
Lower Test and Southampton Servanni Massel (RLE) (Noticitis) Colorania (Act
Lower Test and Southampton Servanni Massel (RLE) (SO(0) (2000) Insined Act
Lower Test and Southampton Servanni Massel (RLE) (SO(0) | 0 12
nos
nos
4 46
0 48 | 25 46
4C 47
5a 0C
4b 76
5 98 | MassqF00to900
MassqF00to900
MassqR00to1200
MassqR00to1200
General(700to900 | 048
445
048 | 20-67
on 64
5-98 | 0.40 | 21 09 | | New Forset - Bartley Water
New Forset - Bartley Water
New Forset - Bartley Water
New Forset - Bartley Water
New Forset - Bartley Water | Consent i maland i maland i maland i maland i maland | TOKE EM GC TOKE EM GC | 2004-000
2004-000
2004-000
2004-000
0004-200 | Continuolitier Sir
Continuolitier Sir
Continuolitier Sir
Continuolitier Sir
Continuolitier Sir | New Forest - Marriev WisterCaneauTFALSCOOMS002D-sinesbells
New Forest - Barriev WisterLouisedFALSCOOMS002D-sinesbells
New Forest - Marriev mater_LouisedFALSCOOMS002D-sinesbells
New Forest - Marriev Wister_Louised; NCLe_DYCCOMS02D-sinesbells
New Forest - Marriev Wister_LouisedFALSCOOMS02D-sinesbells
New Wister_LouisedFALSCOOMS02D-sinesbells
N | 8.46
8.45
8.47
8.47
8.49 | 6.07
8.00
6.60
6.64
7.94 | General/100s000
Lowland/100s000
Lowland/100s000
Lowland/100s000
Lowland/100s0100
Lowland/100s0100 | n 14. | 254 | A-60. | 476 | | New Forset - Bartley Water
New Forset - Bartley Water
New Forset - Bartley Water
New Forset - Bartley Water
New Forset - Hatchet Sowley | Frankrich
Minnt
Minnt
Minnt
Conversi | TOKE EM CC EM CC TRUE EM CC | 900e-900
200e-900
200e-900
90092200
200e-900 | Continuolitical Continuolitica Continuolitical Continuolitica Continuolitica Continuolitica Continuolitica Continuolitica Cont | New Forest - Barriev Wister Louisnaff FNLE 600tot (2000tos)each/Cr
New Forest - Barriev Wister Maniel FNLESCOSCOSCOSCOSCOSCOSCOSCOSCOSCOSCOSCOSCOS | 866
800
800
100
844 | 7 06
65 65
67 68
65 23
99 08 | Loadand/900scr200
Massdy/Ud0s600
Massdy/Ud0s600
Massdy/Ud0s600
General/700s900 | 653
122
643 | 15-30
15-30
18-31 | A 70 | 4C 80 | | New Forset - Habchet Sowley
New Forset - Habchet Sowley
New Forset - Habchet Sowley
New Forset - Habchet Sowley
New Forset - Habchet Sowley | Consorti
Consorti
Control
Control
I realized | COLEC
CM GC
FM SE
CM GC
TOLEC | 200-000
200-000
200-000
200-000
200-000 | Ermel'Insin Desinadisc Desinadisc Creel'Insin Creel'Insin | wwwurest-t-sections boxelevideness(FELSE/Videold00Feedbrails
New - orest-t-sections boxeley/generally-ALSE/Videold00Feedbrails
New Forest-t-slatched
Society/Generally-ALSE/Videold00Feedbrails
New Forest-t-slatched Society-Louisnorf-KSC/Videold00Feedbrails
New Forest-t-slatched Society-Louisnorf-KSC/Videold00Feedbrails | 0.44
0.69
0.44 | 66.65
95.11
66.64
66.76 | Cantacia (100a)00 Cantacia (100a)00 Cantaci (100a)00 Contaci (100a)00 Contaci (100a)00 Contaci (100a)00 Contaci (100a)00 | | | | 60 | | New Forest - Hatchet Sowley
New Forest - Hatchet Sowley
New Forest - Hatchet Sowley
New Forest - Lymington and Bessulieu
New Forest - Lymington and Bessulieu | Frankrich
Losdand
Frankrich
Canada | EM GC
TRLE
EM GC
EM GC
TOLE | 700x400
700x300
70x400
70x400
70x400 | Oreinader Distinader Creativative Creativative Creativative Creativative | New Forest - Habitote Souvey, Lostandop Art. Se; (Victorio) processouv
New Forest - Habitote Souvey, Lostand FALSE/TOXXXXII processous AVE
New Forest - Habitote Souvey, Lostand FALSE/TOXXXII processous AVE
New Forest - Lumington and Beautieu, Desalts FALSE TOXXII processous AVE
New Forest - Lumington and Seature, Desalts (FALSE/TOXXII processous) | 004
021
044
040
040 | 9364
1250
837
9363 | Lowland/00to800
Lowland/00to800
Lowland/00to800
Censals/00to800
Censals/00to800 | n 17 | on 36 | a-10 | 90.79 | | New Forest - Lymington and Bassulau
New Forest - Lymington and Bassulau | Canada
Canada
Canada
Canada
Canada | TOKE
CHICC
TOKE
CHICC | 750to3600
200to3600
200to3600
200to3600
200to3600 | Ditalisedir Dissinution Creatinis Creatinis Dissinution Dissinution | New Forest - Lymington and Beautise/Densis/SF4.507/000000/DrainedA
New Forest - Lymination and Beautise/Densis/TP4.507/000000/DrainedA
New Forest - Lymination and Beautise/Densis/TP4.507/000000/DrainedA
New Forest - Lymination and seasons/periodic (FVI.647/000000/FVI.647/000000)
New Forest - Lymington and seasons/periodic (FVI.647/0000000) crainedA | 060
646
666
666 | 17 85
47 85
49 65
49 65
49 65 | Censis://Occasio0
Censis://Occasio0
Censis://Occasio0
Censis://Occasio0
Censis://Occasio0 | A 06 | 441 | a ta | 10.00 | | New Forest - Lymington and Beautieu | Concerni
Concerni
Materialismo
Materialismo
Doubles | TOKE EM GC TOKE EM GC EM GC | 2004-000
2004-000
2004-000
2004-000
2004-000 | Continuolità Conti | New Forest - Lumination and Beausiss/GeneralTRLCD/00tx00007s/abd-M-
New Forest - Lumination and Beausiss/GeneralFALSE/70tx000007s/abd-M-
New Forest - Lumination and Beausiss/Horicultum#TRLED700x00007s/ab-
New Forest - Lymination and Beausiss/Horicultum#PALSE/70tx00007s/ab-
New Forest - Lumination and Beausiss/Horicultum#PALSE/70tx00007s/ab/fination | 8-06
8-64
8-89
8-70
8-80 | 9/17
7.74
9/19
9/19
9/19
9/19 | General/700to900
General/700to900
Horisulture/700to900
Horisulture/700to900
Poults/700to900 | A 64 | a.ca
20132 | A GA
G MM | a ca
201 62 | | New Forest - Lymington and Bassulau
New Forest - Lymington and Bassulau | Doubles
Doubles
Doubles
Dailry
Nativ | TO IC
TO IC
CB GC
FASSE
TO IC | 2004-000
2004-000
2004-000
2004-000
2004-000 | Creativale
Contraction
Contractions
FreeDistric
Creativale | New Forest - Limination and Seauliss/Pouth/TRUE/P0000000FreeChrist
New Forest - Limination and Seauliss/Pouth/TRUE/P0000000FreeChrist
New Forest - Limination and Seauliss/Pouth/PRUE/P00000000FreeChrist
New Forest - Limination and Seauliss/Pouth/RESE/P000000FreeChrist
New Forest - Limination and Seauliss/Davin/FRESE/P0000000FreeChrist
New Forest - Limination and Seauliss/Davin/FRESE/P0000000FreeChrist
New Forest - Limination and Seauliss/Davin/FRESE/P0000000FreeChrist | 8-96
8-89
9-11
8-12
8-11 | 901 40
903 64
400 40
20 56
54 50 | Poultry/10to/800
Poultry/10to/800
Hourly/10to/800
Daily/90to/800
Daily/90to/800 | 0.36 | 1542 | 0.20 | 16-64 | | New Forest - Lymington and Bassulau
New Forest - Lymington and Bassulau | Philips
Philips
Daily
I mailleant
I mailleant | CHIGC
TOHIC
FALSE
CHIGC
TOHIC | 2004-000
2004-000
2006-000
2004-000
2004-000 | Production
Construction
Distillated/ACE
Construction
Construction | New Forest - Liverindon and Sessales/Dain/FALSE/790bc0000Craines/A-
new Forest - Liverindon and sessales/bary/FALSE/790bc0000Craines/A-
New Forest - Liverindon and Sessales/Dain/FALSE/790bc0000Craines/A-G
New Forest - Liverindon and Sessales/Dain/FALSE/790bc000Fessales/A-G
New Forest - Liverindon and Sessales/LovindorFALSE/790bc000Fessales/
New Forest - Liverindon and Sessales/LovindorFALSE/790bc000Fessales/ | 8:04
8:04
8:75
8:86 | 60 64
60 77
90 55
61 60
61 60 | Casin/9/08xis60
Casin/9/08xis60
Casins/9/08xis60
Casins/3/06xis00
Casins/3/06xis00 | n 04 | d 10 | A 96. | a 90. | | New Forset - Lymington and Bassaleu
New Forset - Lymington and Passaleu | I maland
Lostand
I maland
I maland
Maland | CH GC
TRUE
CH GC
TO IC
TO IC | 700x300
700x300
70x400
70x400
70x400 | Drainartier
Drainartier
Drainartier/for
Drainartier/for
CrassPrain | New Forest - Lymington and seasons, control of Acts of Strong Control Cont | 8+0
8+2
8-65
8-65 | 8-60
8-66
6-60
6-60 | Lowland/00to000
Lowland/00to000
Lowland/00to000
Steadyv00to000 | 042 | 4.6 | | *C.40 | | New Forest - Lymington and Bassulau
New Forest - Lymington and Bassulau
Linear and Middy - Very | Minut
Minut
Minut
Minut
Canada | CH CC
TRUE
CH CC
TO CC | 700x400
700x800
700x400
700x400
700x400 | Christophi
Distinger
Christophical
Christophical | New Forest - Lymington and assumptions/ New Forest - Lymington and assumptions/ New Forest - Lymington and Beautise/Med (FXLE)/000000000000000000000000000000000000 | 0.00
0.00
0.00
0.00 | 46 45
15 86
49 06
49 67
97 60 | Maid/V00000
Maid/V00000
Maid/V00000
Maid/V00000
Maid/V00000
Censall/000000 | 034 | 94.70 | 470 | 25.30 | | Licoer and Middle Test I hours and Middle Test | Canada
Canada
Ganard
Ganard
Ganard | TRUE
TO C
TO C
TO C
TRUE | 700m800
000m/200
200m800
200m800
900007200 | Distinative
Creativals
Creativals
Distinative
FreeDistin | Upper and Middle Test[Circleds(TRUIDPORto000)Circleds/ Uboer and Middle TestCircleds(TRUIDRO00001200FreeChain Loboer and Middle TestCircleds(TRUIDRO0001200FreeChain upper and Middle TestCircleds(TRUIDRO000000000000000000000000000000000000 | 047
n + C
n + C
n + C | 21 48
90 75
90 64
44 70
21 10 | Censula (100soli00
Censula (100soli00
General (100soli00
General (100soli00
General (100soli00
General (100soli00 | A+C
A-06
012 | 06.70
47.00
21.90 | A-94 | 48 C4 | | Linear and Middle Teast | Linding Brown Linding Brown Din Positive Using | TOIC
TOIC
TOIC
TOIC
TRIE | | Countrain
Countrain
Countrain
Countrain
Countrain | Liboer and Middle Teeth-Information (TRUE) (TMID) (MIDDLE AND | 8.67
8.49
8.66
8.07 | 01 60
00 64
60 64
64 67 | Horiculture/700to800
Horiculture/800tor1200
High Useasou
Poutry/700to800
Dain/9700to800 | 0 12
0.07
0.05
0.05
0.07
0.07
0.08 | 21 10
or 80
or 84
or 64
68 61
ar 95
sh.40 | 0.00
0.07
0.07
0.00
0.00 | 04 80
60 64
60 65
44 90
44 46 | | I bose and MANSE Test I hour and MANSE Test Licer and MANSE Test I hour and MANSE Test | Frankerd
Frankerd
Lowland
Milest | TO C
TO C
TRUE
TO C | 200m-000
200m-000
900m-000
200m-000 | Creat/Insin
Oranastar
FreeDrain
Creat/Insin | Libour and Middle TreatLowland(TRELE/TOXING) FeeDrain
upper and Modes i eart_Lowland(Inc.E)*(Toxing) remains
upper and Modes i eart_Lowland(Inc.E)*(Toxing) remains
upper and Modes i eart_Lowland(Inc.E)*(Toxing) remains
Libour and Middle TeartMeedTRELE(TOXING) FeeDrain
Upper and Middle TeartMeedTRELE(TOXING) FeeDrain
Upper and Middle TeartMeedTRELE(TOXING) | 8.05
8.45
8.09
8.00 | 447a
600
1266
6a07 | Lowins/200solo0
Lowins/200solo0
Lowins/200solo0
Mand/200sol00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 265
317
328
317
318 | A-16 | 95.06 | | Britan
Britan
Britan
Britan | Canada
Canada
Canada
Canada
Canada | TO E
TO E
TO E
TO E | 200x-000
200x-000
200x-000
000x-100 | Creativain
Creativain
DrainedWCr
Creativain | Schericzenia (Hubbisch Stade) redicini
schericzenia (Hubbisch Stade) redicini
schericzenia (Hubbisch Stade) redicini
schericzenia (Hubbisch Stade)
schericzenia (Hubbisch Stade)
schericzenia (Hubbisch Stade) | 0 40
0 20
0 46
0 46 | 90 76
99 76
99 76
90 67
90 67 | Canasia (100x300
Canasia (100x300
Canasia (100x300
Canasia (100x200 | 0 45
0 68
0 48 | 05.84
95.84
95.67
47.65 | *** | 96.60 | | erhan
Brhan
Brhan
Brhan | Canard
Canard
General
Canard
Motivition | TO IC
TRUE
TO IC
TO IC | 2004-000
2004-000
2004-000
0004-000
2004-000 | Limed Train Dissination Dissinative Dissinative Creat Train Creat Train | Same Administrative Conference (Conference Conference C | 0.40
0.72
0.44
0.00 | 46.00
56.76
99.48
94.60 | Lamenta, rocesido
Lamenta, rocesido
General(2005c)(00
General(2005c)(20)
Horiculture/2005s)(00 | 0.45
0.42 | 47 65
95 46
46 44 | 4-17
4-17 | 10-05
10-00 | | erhan
Echan
Krhan
Krhan | Hoticulture
Doubles
Doubles
Doubles | TRUE
TRUE
CA GC
TRUE | 90007200
20007200
2004200
00047200
00047200 | FreeDrain
Creathnin
Creathnin
Creathnin | boharjikari kurung (RELEGIORI 1906-1945)
boharjikari kurung (RELEGIORI
1906-1945)
boharjikari RELEGIORI 1906-1945
boharjikari RELEGIORI 1906-1945
boharjikari pilaka (KORO) 1906-1945
boharjikari Pilakari 1906-1945
boharjikari Pilakari | 0.56
6.66
6.45
6.45 | 2242
3442
3442
4044
4044 | Harticulturajitotoration
Pouter/Stosion
Pouter/Stosion
Pouter/Stosion
Pouter/Stosion | 016
016
016 | 22 42
78 66
60 96 | A 49 | 64 C4 | | en, Tribilli
Arriban
Arriban
Biriban
Biriban | Coulord
Coulond
Coulond
Coulond | TO E
TO E
TO E
TO E
TREE | 700x4000
200x4000
200x4000
200x4000
200x4000 | Profilian
Dissinations
Creativain
Dissination
Dissination | bcheribary TRECO 9000000000000000000000000000000000000 | 1 04
6 A4
6 A6
6 A6
6 A6 | 12
04 65
93 93
65 65
7.36 | Daily Volumed Daily Volumed Lowland (2000000 Lowland (2000000 Lowland (20000000 Lowland (2000000000000000000000000000000000000 | 0.00 | 34 54 | A-94 | er 36 | | erhan
Brhan
Brhan
Brhan
Bchan | r national
i national
Miland
Miland
Miland | TO IC
TO IC
TO IC
TO IC
TO IC | salder-2000
salder-2000
2000-2000
2000-2000
900001200 | Constitution Constitution Constitution Constitution Constitution FreeDistrict | Schedick - A. San Ander (2005 Feed Chair) Schedic Australiff (3) (2005 Feed Chair) Schedighase (3) (-1-1), (-1 | 844
845
847 | 64 60
64 60
96 90
97 96 | Continue Cont | 0 17
0 50 | 92 95
99 34 | A 160 | 04 80 | | Washen Greane
Washen Greane
Washen Greane
Washen Greane
Washen Greane | Connels
Connels
Connels
Connels
Connels | TO IC
CM GC
TO IC
TRUE
CM GC | 2004-000
2004-000
2004-000
2008-000
0004-4200 | Creativein Oreinaria: Desinaria: Desinaria: Consecutivein | Weaton Smann Constit TRUD ROOK (600 FeeD on
Weaton Smann Constit F. 4.5 (7.00 (600 FeeD on
Weaton Smann Constit F. 4.5 (7.00 (600 FeeD on
Weaton Smann Constit F. 6.5 (7.00 (600 FeeD on
Weaton Smann Constit F. 6.5 (600 feeD on
Meaton Sm | 6 19
6 20
6 20
6 26
6 29 | 97 77
94 18
94 19
99 57
99 68 | Censals (700s)600
Censals (700s)600
Censals (700s)600
Censals (700s)600
Censals (700s)600 | A 99 | 00 M | A.84 | 06.85 | | velaston Granera
Wilaston Granera
Wilaston Granera
Wilaston Granera
Wilaston Granera | Consile
Consile
General
General | TONE TONE TRUE EN GE TONE | OwerSIN
700x800
700x800
700x800
700x800 | Construction Construction FreeDistric Construction Construction | | 976
976
911
844 | 95 No.
95 No.
95 SD
96 329
98 97 | Same and Control of the t | 0 76.
0 48 | 16.10
20.07 | 0.42 | 23 01 | | A | Amount | | GOTOMO PORO
Primer (GOTO
2000) GOTOMO PORO
2000) GOTOMO PORO
2000-2000
2000-2000
2000-2000
2000-2000
2000-2000
2000-2000
2000-2000
2000-2000
2000-2000
2000-2000 | Familiary of the control cont | Western Streams/Generally A. SS/900010097 healthin
Western Streams/Generally A. SS/900010097 healthin
Western Streams/Generally B. LS00001000F healthin
Western Streams/Generally B. LSD0001000 healthin
western Streams/Honoustern H. August M. SS/9000000 healthin
Western Streams/Honoustern H. August M. SS/900000000000000000000000000000000000 | | | General(600cn/200
General(600cn/200
General(60ver) 500
H310cstary(1000cs00
H310cstary(1000cs00) | 020
665
646 | 27 22
08 45
95 80 | a-u | 04 00 | | Wasten Granns | Sindratus. | TORE | 900mm*200 | ErsePrein | Western Streams Horticulture/TRUE900to t200 FreeDrain | 8.09 | 20.00 | Horiculture900to1200 | 100 | 96.60 | | | | March Marc | | The color of | STATES OF THE PARTY PART | THE COLOUR STATE OF CO | | Section Sect | | | Accompany of Section o | See | | |---|--
---|---|--|--
--|---|--|--|--|---| | Train 3 Stage 2 and 3 Resided (Utters Lockup) Train 3 Stage 2 and 3 Resided (Utters Lockup) Train 2 Stage 2 and 3 Resided (Utters Lockup) Train 2 Stage 2 and 3 Resided (Utters Lockup) Train 2 Stage 2 and 3 Resided (Utters Lockup) Train 3 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 4 Stage 2 and 3 Resided (Utters Lockup) Train 5 Stage 2 and 3 Resided (Utters Lockup) Train 5 Stage 2 and 3 Resided (Utters Lockup) Train 5 Stage 2 and 3 Resided (Utters Lockup) Train 5 Stage 2 and 3 Resided (Utters Lockup) Train 5 Stage 2 and 3 Resided (Utters Lockup) Train 5 Stage 2 and 3 Resided (Utters Lockup) Train 5 Stage 2 and 3 Resided (Utters Lockup) Train 6 Stage 2 and 3 Resided (Utters Lockup) Train 6 Stage 2 and 3 Resided (Utters Lockup) Train 6 Stage 2 and 3 Resided (Utters Lockup) Train 6 Stage 2 and 3 Resided (Utters Lockup) Train 6 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 Resided (Utters Lockup) Train 7 Stage 2 and 3 | Wind Windows State | Farticeper Equivalent University | P Urban Ruroff Coeffic
07 27
07 44
07 44
08 29
08 29 | Open urban land | Body | Section 1 - Sectio | See | Regulational N export case Mickers (88) (1984) (1985)
(1985) (198 | Commodal i industrial it report updificant lasterian commission co | Open urbain n apport particles of the Beauty 5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0 | L |